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Abstract: We report on numerical simulations of SU(2) lattice gauge theory with two

flavors of light dynamical quarks in the adjoint of the gauge group. The dynamics of this

theory is thought to be very different from QCD – the theory exhibiting conformal or

near conformal behavior in the infrared. We make a high resolution survey of the phase

diagram of this model in the plane of the bare coupling and quark mass on lattices of size

83 × 16. Our simulations reveal a line of first order phase transitions extending from β = 0

to β = βc ∼ 2.0. For β > βc the phase boundary is no longer first order but continues

as the locus of minimum meson mass. For β > βc we observe the pion and rho masses

along the phase boundary to be light, independent of bare coupling and approximately

degenerate. We discuss possible interpretations of these observations and corresponding

continuum limits.
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1. Introduction

Non-abelian gauge theories at zero temperature and matter density can exist in a number of

distinct phases which can be distinguished by the characteristic dependence of the potential

energy on distance for two well separated static sources. These different behaviors of the

potential energy can be accessed by varying the number of colors and the number of

flavors of fermions. The collection of all of these different behaviors, when represented in

the flavor-color space, constitutes the Phase Diagram of the given gauge theory. Up to

possible dualities among different theories it uniquely defines each theory. In [1] the reader

will find an up to date review of all of the possible phases for a generic gauge theory.

Knowing the phase diagram of strongly coupled theories has an immediate impact

on the construction of sensible extensions of the standard model of particle interactions.

Dynamical breaking of the electroweak symmetry is a time-honored example. It is well

known that scaled up versions of QCD [2] are ruled out by electroweak precision data.1

Using fermions in higher dimensional representations of the gauge group opens up

many new phenomenological possibilities [4 – 6]. There are, in fact, a number of reasons

to recommend using higher dimensional representations in the underlying dynamics break-

ing the electroweak theory: i) The dynamics is generally different from QCD; ii) A near

1The reader will find in [1, 3] an exhaustive review of all of the precision data results from LEP I and II

and how they constrain old and new models of dynamical breaking of the electroweak theory.
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conformal behavior can be reached for a very low number of fermions naturally reducing

the contribution to precision observables [4]; iii) The spectrum of spin one states of these

theories leads to interesting physical processes to be observed at the LHC [7 – 9].

An explicit phenomenological realization of this type of model is termed Minimal

Walking Technicolor (MWT) [9] and is based on an SU(2) gauge theory coupled to two

flavors of adjoint quarks. This model is thought to lie close in theory space to theories

with non-trivial infrared fixed points [4, 10]. Indeed it is possible that this theory already

exhibits such a fixed point. In the vicinity of such a zero of the beta-function the coupling

constant flows slowly or walks. Originally such models were introduced to alleviate the

flavor changing neutral current problem for extensions of the technicolor theory needed to

give mass to the standard model fermions [11 – 14]. The MWT is thought to achieve such

walking behavior with a minimal number of light (techni)quarks [4]. This is the theory

studied numerically in this paper.

Another recent extension of the standard model which has attracted a great deal

of interest is unparticle physics [15]. One simply couples a new conformal sector to the

standard model. It is natural to identify this sector with a strongly coupled theory featuring

an infrared fixed point. Knowledge of the phase diagram is then essential to provide natural

ultraviolet completions of unparticle models. Making use of the analytic knowledge of the

phase diagram one finds, for example, that it is not easy to construct gauge theories with

an infrared fixed point able to produce spinor-type “unparticle stuff” [1].

It is hence crucial to gain information on the phase diagram of strongly interacting

gauge theories. Lattice methods and computational resources are now mature enough

to provide a “first principles” systematic study of such phase diagrams, with dynamical

fermions in the chiral limit on reasonably large lattices. Investigations of representations

other than the fundamental have just begun [16 – 19], significantly extending older work on

very small lattices [20]. Simulation studies of many flavors in the fundamental representa-

tion have also become more active of late [21, 22], extending the results of [23, 24].

In the current work we provide a high resolution scan of the mass/coupling phase

diagram (not to be confused with colors/flavors/representation discussed above) of SU(2)

gauge theory with two (Dirac) flavors of fermions in the adjoint (triplet) representation,

using larger lattices and higher statistics than were utilized in our earlier work [16]. We find

clear evidence of a phase boundary in the two dimensional plane of bare gauge coupling

and quark mass. For β < βc ∼ 2.0 the system undergoes a first order phase transition as

this line is crossed. The latent heat of this transition goes to zero for β → βc while the line

continues to larger β as the locus of minimum meson mass. For β < βc we see evidence for

chiral symmetry breaking and a Goldstone behavior of the pion. Conversely, for β > βc the

Goldstone behavior m2
π ∝ mq disappears in a a novel way as the system is tuned close to

the phase boundary, the string tension in lattice units is so small that we can only bound

it from above, and the pion and rho masses drop quickly to values that are degenerate,

within statistical errors.

All this behavior is indicative of a theory that is very different from QCD, or even the

theories with fundamental flavors that have been studied on the lattice. We will describe

the various possible interpretations of the lattice data in the Discussion section at the end
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of this work, but here we would like to highlight the most interesting one: all of the lattice

data that we have obtained is consistent with either a nontrivial infrared fixed point where

the theory becomes conformal, or a theory with an asymptotically free beta function that

is very small for the range of scales accessible on our lattice (i.e., the coupling runs so

slowly that we cannot start at weak coupling and still have access to the confinement scale

on lattice of modest size).

Either way, if this theory were to provide the mechanism of dynamical electroweak

symmetry breaking, the phenomenology would be radically different from a QCD-like tech-

nicolor scenario, and most likely naive dimensional analysis arguments would not be valid.

Thus, the lattice results that we have obtained are quite exciting from this perspective and

warrant further studies on larger lattices, which are currently in progress.

In the next section we summarize some of the relevant analytical results. We then

describe our lattice model and present our numerical results. Finally, we end with a

discussion and interpretation of what we have found from our Monte Carlo study. A full

tabulation of the meson masses that we have obtained is presented in appendices A and B.

2. Summary of the analytical results

Dynamical fermion lattice simulations of higher dimensional representations are at an ex-

ploratory stage and it is hence useful to compare the results with theoretical expectations

obtained using various analytical methods. To gain insight one can now use, for instance,

the conjectured all-order beta function for nonsupersymmetric gauge theories [10] together

with the constraints from the unitarity of the conformal operators. This method constitutes

a step forward with respect to the older approach based on the truncated Schwinger-Dyson

equation (SD) [25 – 27], which is also referred to as the “ladder approximation” in the lit-

erature. In contrast to the ladder approximation, the all-order beta function allows one to

determine the fermion mass anomalous dimension for any strongly coupled gauge theory

at the infrared fixed point. Anomalous dimensions at fixed points are scheme independent

since they represent physical quantities. The analytical phase diagram obtained by this

approach, and a comparison of it to recent lattice results [16, 18, 19, 21, 22], is summarized

in [1].

In the ladder approximation the SU(2) theory with two Dirac flavors of adjoint fermions

should be just below the conformal window where the theory develops an infrared fixed

point [4]. In the context of this approximation this means that the anomalous dimension

of the fermion mass exceeds unity. However, according to the all-order beta function, if the

infrared fixed point is actually reached then the anomalous dimension assumes the value

γ = 3/4, where γ = −d lnm/d lnµ and m is the running fermion mass. If we take γ = 1 as

the boundary of the conformal window, the all-order beta function suggests that the SU(2)

model is conformal in the infrared. However, the constraint coming from the unitarity

allows γ to be as large as two before conformality is lost. Thus it is an open question

whether or not a nontrivial infrared fixed point exists. As will be seen, the results of our

lattice study suggest that this fixed point may exist, though further investigations will be

required to strengthen the case for that conclusion.

– 3 –
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It is instructive to compare this theory with the case of the SU(3) gauge theory with

two Dirac fermions in the two index symmetric representation. In “theory space” the

previous gauge theory and the present one are very close, since the adjoint of SU(2) is

equivalent to the two index symmetric representation. Recent lattice results [18] suggest

that this theory may have an infrared fixed point, though more studies are needed here too.

We note that the ladder approximation predicts that this theory is nearly conformal (i.e.

walking), and further away from conformality then the SU(2) theory. Also, if one assumes

that the theory is conformal in the infrared, then the all-order beta function predicts that

the anomalous dimension of the fermion condensate is γ = 1.3, larger than the value of

3/4 that was found in the SU(2) case above. If it is true that SU(3) has an infrared fixed

point, it follows that the SU(2) theory also has an infrared fixed point, since the screening

due to fermions is even greater in the latter case.

As an aside, we note that it is quite interesting that for SU(3) the anomalous dimension

γ is larger than unity. If true, this would be quite an important result, since large anomalous

dimensions are needed when constructing extended technicolor models that are able to

account for the heavy quark masses, as noted in [1]. If the preliminary indications of γ > 1

hold up to further scrutiny, it would overturn the common lore — but no rigorous theorem

— regarding the anomalous dimension of the “quark” bilinear operator.

Other interesting cases to consider are those with eight and twelve Dirac fermions in

the fundamental representation of SU(3). The all-order beta function predicts that the

conformal window cannot be achieved for a number of flavors less then 8.25 (really, nine

once the integer constraint is imposed) for the fundamental representation of SU(3). This

is confirmed by the latest lattice results [21, 22]. In that work it was also suggested that

the theory with twelve flavors has an infrared fixed point. The prediction of the anomalous

dimension of the quark mass operator is then γ = 3
4 . Amusingly this theory has the same

anomalous dimension as the SU(2) two adjoint flavor theory that we study here (assuming

they both possess an infrared fixed point).

3. Lattice implementation

3.1 Action and simulation algorithm

The lattice action we employ consists of the usual Wilson plaquette term

SG = −
β

2

∑

x

∑

µ>ν

ReTr
(

Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν (x)
)

, (3.1)

with the link matrices Uµ(x) in the fundamental representation of SU(2), together with

the Wilson action for two Dirac fermions in the adjoint representation:

SF = −
1

2

∑

x

∑

µ

ψ(x)
(

Vµ(x) (I − γµ)ψ(x+ µ) + V T
µ (x− µ) (I + γµ)ψ(x− µ)

)

+
∑

x

(m+ 4)
∑

x

ψ(x)ψ(x) . (3.2)
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Here adjoint links Vµ(x) are used, which are related to the fundamental links by

V ab
µ (x) =

1

2
Tr

(

σaUµ(x)σbU †
µ(x)

)

, (3.3)

with σa, a = 1, 2, 3 the usual Pauli matrices.

We have simulated this theory over a range of gauge couplings β = 1.5 − 3.0 and

bare quark masses m ranging from −2.0 < m < 0.5 on 83 × 16 lattices using the usual

Hybrid Monte Carlo algorithm [28]. Typically we have generated between 400−2000 τ = 1

HMC trajectories. Antiperiodic boundary conditions were used for the fermions in the time

direction (in order to ameliorate problems with exceptional configurations at the for small

quark mass), whereas all other boundary conditions are periodic.

All simuluations were run on the IBM BlueGene/L SUR machine at Rensselaer over a

period of four months. The simulation software used is a recent, BlueGene/L architecture-

specific version of the Columbia Physics System, modified such that SU(2) with any number

of adjoint (Wilson or domain wall) fermions can be studied. The code has been validated

by reproducing the results of [29] for the case of pure super-Yang-Mills. Indeed, the soft-

ware was developed for a large-scale follow-up study of pure super-Yang-Mills that is in

progress [30]. The average compute rate was 70 Gflop/s, on a 128 node partition of the

BlueGene/L.

3.2 Meson operators

We estimate the hadron masses by suitable fits to corresponding time sliced averaged

correlation functions

GO(t) =
∑

x,y

< ψ(x, t)ΓOψ(x, t)ψ(y, 0)ΓOψ(y, 0) > (3.4)

where ΓO = γ5 for the pion and ΓO = γµ, µ = 1, 2, 3 for the rho (the latter being averaged

over spatial directions µ). Errors are estimated by a jackknife procedure in which fits are

made to the meson correlators using subsets of the data, the mean and deviation of the

resulting mass distribution yielding a mean meson mass and error.

3.3 String tension

We estimate the string tension as a function of lattice scale R from the large distance

asymptotic behavior of the Creutz ratio [31]

χ(R,R) = − ln
W (R,R)W (R− 1, R− 1)

W (R,R− 1)W (R− 1, R)
∼ σa2. (3.5)

Here W (R,R′) is the expectation value of the R × R′ Wilson loop and a is the lattice

spacing. The asymptotic behavior on the r.h.s. of (3.5) assumes an area law for the Wilson

loops. In practice one looks for the Creutz ratios χ(R,R) to coalesce on an envelope where

the area law becomes dominant. This occurs for Ra of order or larger than the scale of

confinement ℓc = 1/Λ, where Λ is the usual dynamical scale of an asymptotically free

gauge theory. In the chiral limit where the fermions are massless, the lattice spacing is a
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function of the bare lattice coupling β = 4/g2, through a ∼ Λ−1 exp(−2π2β/b) where b is

the 1-loop beta function coefficient. (Of course this estimate can be improved with high

loop results, as has been considered in [17].) Thus since σ and Λ are physical scales, one

expects to see an exponentially decreasing envelope for the Creutz ratios. Away from the

chiral limit, there is a threshold mass above which the running of the coupling is altered.

In that case one would have a = a(β,m), where m is the bare fermion mass. Finally, we

should note that since we use fundamental links in the Wilson loops, they are not screened

by the adjoint fermions, and an area law emerges at scales Ra > ℓc, provided the theory

is asymptotically free. On the other hand, if the theory has a nontrivial infrared fixed

point, the only scale available is the finite extent of the lattice, L3×T (here, dimensionless

quantities). One would therefore expect to see that the Creutz ratio behavior depends

strongly on L, T , in contrast to what happens in the confining case where for σa2L2 and

σa2T 2 very large the results become independent of L, T .

4. Results

Our results were obtained as a series of bare Wilson fermion mass scans, at fixed bare gauge

coupling β = 4/g2. Perhaps the simplest observable to consider is the expectation value of

the plaquette or action. Figure 1 shows a series of scans in the “quark” mass for different

values of β. (In what follows we will often refer to the elementary fermions as “quarks”

and composite states as “pions”, “rhos”, etc. Of course this is only by way of analogy,

and we could alternatively prefix these names with “techni-”.) Notice the appearance of

a discontinuity for small β < βc ∼ 2.0. The data indicates that a line of first order phase

transitions exists for small β. Further support for this conclusion comes from the latent

heat, as measured by the jump in the plaquette and displayed in figure 2. It appears to

vanish as β → βc ∼ 2.0. Beyond βc we observe that the phase boundary continues as the

locus of minimum pion and rho meson mass. The natural conclusion is that βc ≈ 2 is a

second order end-point for the line of first order transitions. In section 5 we will interpret

the first order behavior across the phase boundary, at β < βc, as corresponding to a bulk

phase transition in the effective SU(2) gauge theory, in accordance with the well-known

combined fundamental/adjoint plaquette action phase diagram [32, 33].

In figure 3 we illustrate the behavior of the rho mass mρa by plotting it as a function

of the bare Wilson fermion mass ma at three representative points in the phase diagram:

β = 1.5, β = 2.0 and β = 2.5. (The full set of rho mass results from our studies is tabulated

in appendix B.) The region of quark mass to the left of the minimum corresponds to an

Aoki phase [34], except that here it is for adjoint Wilson fermions, which was recently

studied in [17].2 In the case of β ≥ 2, as one approaches the minimum meson mass from

above, there is a rapid drop in mρ that is inconsistent with a simple linear variation with

bare quark mass mρ ∝ m−mc, as one would see in QCD, or in the case of two fundamental

flavors observed in [16] (cf. figure 5 of that reference). The data corresponds instead to a

2Notice that the dependence of the rho mass on bare quark mass appears to depart from linear at strong

coupling which we attribute to the proximity of the first order phase transition
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Figure 1: Plaquette expectation values as a function of the bare fermion mass, along lines of

constant lattice gauge coupling β = 4/g2. It can be seen that βc ≈ 2 marks a transition, below

which a first order phase transition is seen as the quark mass is varied. We therefore find that

close to the phase boundary, βc corresponds corresponds to a “bulk” transition, below which only

a lattice phase exists. This can be understood in terms of the dynamical generation of an effective

adjoint plaquette term in the gauge action, due to the radiative effects of nearly massless adjoint

“quarks.” Of course, for masses far enough away from the critical value the renormalization of the

gauge action is relatively small and the adjoint term will not lead to a bulk transition.

1.5 1.6 1.7 1.8 1.9 2 2.1
beta

0

0.05

0.1

0.15

0.2

0.25

L
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t 

H
ea
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Figure 2: The latent heat, which appears to vanish in the β → 2 limit.
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Figure 3: The “rho” massmρa, as a function of the bare Wilson fermion massm, for three example

values of the bare lattice coupling β. Note that as β increases past the critical value βc ≈ 2, the

ρ mass on the phase boundary becomes small on the order of the inverse lattice size 1/L. This is

consistent with the ρ becoming a massless state in the thermodynamic limit

form

mρ ∼ (m−mc)
1/(1−ǫ), 0 < ǫ < 1. (4.1)

Similar results are obtained for the pion, illustrated for same three values of β in

figure 4 below. (A full tabulation of pion masses is given in appendix A.) The figure shows

the (mπa)
2 as a function of the bare quark mass ma, so it is important to keep in mind

that the dependence of the lattice spacing on β,m also enters into the plot. There is

clear evidence of a linear Goldstone dependence at strong coupling consistent with chiral

symmetry breaking for β < 2.0. Conversely at β = 2.5 the data near the phase boundary

line is consistent with a simple linear dependence of the pion mass on bare quark mass and

chiral symmetry restoration. Again, the pion mass varies very rapidly with bare quark mass

close to β = 2.0. One interpretation, which we will discuss further below, is that the lattice

spacing shrinks significantly as one approaches the chiral limit, due to the comparable

renormalization of the gauge coupling by gluons and and quarks in this model. I.e., the

coupling walks when the quarks are very light, and does so over a large range of scales as

the quarks approach zero renormalized mass.

The behavior of the pion and rho masses along the entire phase boundary is shown in

figure 5. Two regimes are seen; a strong coupling phase with a light pion and heavy rho for

β < βc ∼ 2.0 and a phase for β > βc where the pion and rho are approximately degenerate

and independent of the bare coupling. The situation at β ∼ βc is somewhat unclear as the

statistical errors are large there. The phase boundary itself is shown below in figure 6.

We have also made estimates of the string tension as measured by Creutz ratios χ(R,R)

[cf. (3.5)] of various sizes. Fig 7 shows a plot of χ(R,R), R = 1, . . . , 5, as a function of
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Figure 4: The pion mass squared for example values of β. The very sharp behavior as the bare

mass is varied away from the phase boundary near β = 2 stands in contrast to the rounding that

would normally be expected from the effects of the finite size effects. The significant decrease in the

slope of the line as one approaches the phase boundary is presumably due to (mπa)
2/(ma) ∼ a, with

a(β,m) having a significant m dependence when the fermions are very light. This is particularly

true since the contribution of the quarks to the running of the coupling is quite close to that of the

gluons.
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Figure 5: Pion and rho masses along the phase boundary. Note that they become degenerate for

β >∼ 2.
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Figure 6: Here, the phase boundary is extracted from the minimum of rho mass at each β.

β as we move along the phase boundary mc(β). At distances of order or larger than the

confinement scale, these ratios should coalesce on the value of σa2 where σ is the string

tension. For β = 1.9, 1.95 this occurs, as it can be seen that χ(4, 4) and χ(5, 5) coincide.

For β ≥ 2 the envelope where χ’s begin to converge cannot be seen, but the value of χ(5, 5)

places an upper bound on σa2. It may be that much larger R values in χ(R,R) are needed,

which is not possible on the 83 × 16 lattice that we study here. This would be the case

if the lattice spacing a has the very sensitive exponential dependence on β that would be

expected from a walking theory; for instance in the present theory using 2-loop running

one would predict that between β = 2 and β = 2.1, σa2 would decrease by an order of

magnitude and between β = 2 and β = 2.5 it would decrease by five orders of magnitude.

Given the trend in Creutz ratios with R at β = 2, one can roughly estimate that χ(7, 7) or

χ(8, 8) may be required before the envelope at this value of β would be seen. This would

require a lattice of size 163 × 32, which we are currently studying. On the other hand, and

this is the possibility that we would like to emphasize, it could be that for β ≥ 2 one falls

into the basin of attraction for a nontrivial infrared fixed point, and the area law does not

hold at any scale.

For β < 2 one has hints of the envelope, though the large statistical errors due to

enhanced fluctuations at small β prevent us from measuring the larger loops needed for

χ(4, 4) and χ(5, 5). Nevertheless, it would appear that the string tension σ is of order 1/a2,

consistent with a phase of the theory dominated by lattice artifacts.

In the next section we discuss further the possible interpretations of these observations.

5. Discussion

Generically a lattice gauge theory will have a confining phase at strong bare coupling,
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chi(1,1)
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chi(3,3)
chi(4,4)
chi(5,5)

Figure 7: Here we show the Creutz ratios along the phase boundary corresponding to minimum

meson masses. For β = 1.9, 1.95 the envelope that determines σa2 can be seen from χ(4, 4) and

χ(5, 5), since they coincide. For β ≥ 2 the envelope where χ’s begin to coalesce cannot be seen,

though the value of χ(5, 5) places an upper bound on σa2. For β < 2 there is some indication of

an envelope, though large statistical errors prevent us from measuring the larger loops needed for

χ(4, 4) and χ(5, 5).

and we believe this to be true for the present theory. Typically this is signaled by a non-

zero string tension extracted from the asymptotic behavior of Wilson loops, or correlation

functions of Wilson/Polyakov lines. However at strong coupling the lattice theory will be

dominated by lattice artifacts. For instance, from figure 7 on sees that at β < βc ≈ 2,

the Creutz ratios indicate that σa2 = O(1), so that for small β (strong coupling) the

string tension, and hence scale of confinement, is of the same scale as the lattice spacing

a. Similarly, in figure 3 on sees that for β = 1.5 we obtain mρa ≥ 1, indicating that the

rho also lies at the ultraviolet cutoff scale.

To understand whether this confining strongly coupled phase survives the continuum

limit it is necessary to examine the behavior of, say, a Wilson loop, as the lattice spacing

is sent to zero holding the area of the Wilson loop fixed in physical units. For a theory

exhibiting asymptotic freedom this is accomplished by increasing β. In the case of QCD

and on an infinite lattice this process can be continued indefinitely until we end up at the

fixed point β = ∞, thereby removing the ultraviolet cutoff. However it is possible that

this procedure is interrupted by the presence of a first order phase transition at some finite

bare coupling — so that the signal of confinement at strong coupling is not a property of

the continuum theory. This appears to happen in this model, in the vicinity of the first

order line. That is, our results indicate that the strong coupling phase at β < βc is not

continuously connected to a phase with a continuum limit.

On the other hand, it does appear that one can move smoothly into a continuum phase
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if one starts sufficiently far away from phase boundary. In fact, this must be true since for

large enough mass the theory is an arbitrarily good approximation of the quenched theory

with just the Wilson plaquette action in the fundamental representation. Since that theory

does not have a discontinuity separating the strong and weak coupling phases, we know

that this is also true in our theory in this quenched limit.

It is also possible that the a continuum theory with massless quarks may be obtained

by tuning the bare quark mass in the regime β > βc. The fact that the minimum meson

mass appears to scale with the inverse lattice size is consistent with this.

All of this can be understood in terms of radiative effects of two flavors of adjoint

fermions. If the fermions are very light, they will generate a large adjoint plaquette term

when they are integrated out to obtain the long wavelength effective theory. As mentioned

briefly above, it is known that a first order transition occurs in the adjoint plaquette action

theory [32] and that in the mixed fundamental/adjoint plaquette theory there is a first order

transition line when the adjoint term is sufficiently large [33]. The interpretation of our

results is therefore clear: if the quarks are approximately massless, the adjoint fermions lead

to a large effective adjoint plaquette term, conventionally characterized by the coefficient

βA. As one passes through the phase boundary at small fundamental plaquette action

coupling β, one is actually moving back and forth across the first order line in the β–βA

plane. Since in the quenched fundamental/adjoint theory the first order line only exists

for β < 1.6, βA > 0.7, we can understand why we too see that the first order behavior

disappears for sufficiently large β or mass m. The fact that the transition in our theory

happens instead at βc ≈ 2 would again be due to the radiative effects of the fermions,

which will also renormalize β.

Since in a walking technicolor scenario we are interested in the theory with massless

fermions, the phase of the lattice theory that is relevant for continuum physics is the phase

where β > βc. For β → ∞ we expect that the theory is driven to the asymptotically free

fixed point known to exist in perturbation theory. However the behavior of the theory in

the infrared is less clear. If the theory admits a new conformal fixed point then one expects

that this will govern the long distance physics of the model and long distance features of

the theory will be insensitive to the bare lattice coupling. In addition such a theory has no

intrinsic scale, so that the only scales would be the lattice volume and the temperature.

It follows that both the string tension and meson masses would scale to zero in the zero

temperature, thermodynamic limit. This sort of behavior is certainly consistent with what

we see in the phase β > βc along the line of minumum meson mass m = mc(β). Thus, our

findings are consistent with the appearance of a new conformal fixed point in this theory,

though they also leave open the possibility of a walking theory.

However, one must be careful in drawing the conclusion that a nontrivial infrared fixed

point exists. To take the continuum limit along the critical line requires tuning the bare

coupling β with lattice spacing a such that finite size effects are under control. If this

running β(a) is sufficiently slow it can lead to extreme sensitivity in the dependence of

the lattice spacing on bare coupling, when inverted to give a = a(β). As was discussed

in relation to the Creutz ratio data above, small increases in the β would yield huge

decreases in the lattice spacing. It is difficult to analyze such changes of scale on a relatively

– 12 –



J
H
E
P
1
1
(
2
0
0
8
)
0
0
9

small lattice. In particular, large finite size effects can mask the true infinite volume, zero

temperature physics. For example, the physical box size can become so small that the

system deconfines and looks quasi-free, which would also be consistent with our data. In

effect, the physics is indeed being dominated by a conformal fixed point — not a new

infrared stable point but the usual infrared unstable asymptotically free fixed point. To

distinguish amongst the possibilites will require larger lattices and a thorough study of

finite size effects, so one must be cautious in interpreting our findings thus far.

Another way of restating this is that any theory whose coupling runs very slowly with

scale will necessarily generate a dynamical mass scale in lattice units (e.g., aΛ), which is

very small for a weak bare coupling. To distinguish a confining theory with a small scale

from a theory with a non-trivial infrared fixed point will then necessitate simulations on

lattices which are significantly bigger, in lattice units, than the inverse of this small mass

scale, which is a hard problem. And, indeed, on small lattices the physics will be governed

by the usual ultraviolet fixed point corresponding to asymptotic freedom. On the other

hand, simulations on larger lattices would allow us to perform a “step-scaling” analysis,

in order to extrapolate to the infinite lattice volume behavior. We have begun studies of

163 × 32 lattices with the purpose of distinguishing between the walking and conformal

scenarios that we have just described.

Finally we would like to conclude by discussing a possible phase diagram which might

be relevant in the situation where the theory does indeed contain a new conformal fixed

point. Figure 8 shows a cartoon of fixed points and possible RG flows for this model

projected to the plane of bare coupling constants (β,m). The arrows denote the flow of

couplings under increases in length scale corresponding, for example, to a blocking transfor-

mation. The theory certainly contains the usual infrared unstable fixed point corresponding

to (β,ma) = (∞, 0). A critical line corresponding to massless quarks extends out of this

fixed point to smaller β or stronger coupling. If a conformal fixed point exists it should

form a sink for these flows as shown.

In the picture we also show as a dashed line the line of first order phase transitions.

Our data supports the conjecture that this line ends on a critical point corresponding to

another infrared unstable fixed point.

Furthermore, our results are consistent with the first order line and the critical line

joining together at the critical endpoint. Any putative conformal fixed point would then

serve as a infrared sink for massless flows out of these fixed points as shown.3

Notice that all these fixed points are also unstable in the direction orthogonal to the

critical line; i.e. under a mass deformation. Recognizing this fact actually allows us to

draw a RG flow that would automatically permit a walking dynamics even in a theory

inside the conformal window. One merely allows the theory to start near one of ultraviolet

fixed points with a small but non-zero mass. Under blocking such a trajectory would flow

initially towards the conformal fixed point in the vicinity of which the flow would slow

before eventually flowing out along a direction corresponding to a mass deformation. Of

course a walking scenario that introduces a mass for the fermions is not what is desired when

3Many thanks to Ben Svetitsky for illuminating discussions of these issues
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Figure 8: Here we provide a cartoon of renormalization group flows, in order to illustrate what

may occur if the present theory has a nontrivial infrared fixed point. The “UV” point on the right

corresponds to (β,ma) = (∞, 0), the usual infrared unstable fixed point. On the other hand, “CFP”

indicates a putative nontrivial infrared fixed point where the theory is conformal. Flows under a

blocking transformation are indicated by arrows along the line of critical masses. Away from this

line the theory will flow to a quenched fixed point. The infrared sink is located at the far left-hand

side, presumably (β,ma) = (0,−2) based on figure 6.

trying to use the theory studied here for breaking the electroweak symmetry dynamically.

Nevertheless, the possibility of a nontrivial infrared fixed point in the present theory would

be interesting in its own right. However, there are technicolor models which make use of

different gauge dynamics realizing this possibility as explained in [35, 36].

In conclusion, we have found that the present theory at critical fermion mass either

has a very slowly running gauge coupling (walking) or a nontrivial infrared fixed point

(conformal). The behavior is drastically different from theories that do not sit near the

conformal window. However, special difficulties emerge in the present theory due to extreme

sensitivity of the lattice spacing on the bare gauge coupling, due to the slow running.

Studies on larger lattices and a careful step-scaling analysis is needed, and indeed underway,

in order to clarify these issues.
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A. Pion masses

m pion error

0.50 2.821 0.013

0.25 2.699 0.033

0.00 2.547 0.019

-0.25 2.403 0.026

-0.50 2.229 0.022

-0.75 2.028 0.023

-1.00 1.793 0.027

-1.25 1.538 0.037

-1.50 1.197 0.027

-1.65 0.873 0.070

-1.70 1.109 0.021

-1.75 1.181 0.027

-1.80 1.195 0.020

-1.85 1.187 0.022

-1.90 1.150 0.020

Pion masses for β = 1.50.

m pion error

0.50 2.802 0.019

0.25 2.693 0.018

0.00 2.527 0.029

-0.25 2.370 0.029

-0.50 2.200 0.032

-0.75 1.999 0.024

-1.00 1.744 0.041

-1.25 1.481 0.033

-1.40 1.242 0.012

-1.45 1.161 0.017

-1.50 1.061 0.015

-1.55 0.951 0.014

-1.60 0.711 0.048

-1.65 1.304 0.029

-1.70 1.312 0.017

-1.75 1.291 0.020

Pion masses for β = 1.75.

m pion error

-1.20 1.457 0.011

-1.25 1.385 0.012

-1.30 1.305 0.010

-1.35 1.195 0.011

-1.40 1.048 0.015

-1.45 0.82 0.42

-1.50 1.250 0.026

-1.55 1.351 0.016

-1.60 1.380 0.0075

-1.65 1.386 0.016

-1.70 1.360 0.012

-1.75 1.3367 0.0079

Pion masses for β = 1.90.

m pion error

-1.15 1.492 0.014

-1.20 1.430 0.016

-1.25 1.340 0.018

-1.30 1.229 0.018

-1.35 1.094 0.027

-1.40 0.67 0.13

-1.45 1.146 0.025

-1.50 1.320 0.016

-1.55 1.392 0.020

-1.60 1.402 0.018

-1.65 1.378 0.026

-1.70 1.358 0.028

Pion masses for β = 1.95.
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m pion error

-1.05 1.550 0.015

-1.10 1.466 0.018

-1.15 1.384 0.012

-1.20 1.249 0.025

-1.25 1.041 0.028

-1.30 0.437 0.068

-1.35 0.693 0.014

-1.40 1.119 0.017

-1.45 1.322 0.020

-1.50 1.409 0.027

-1.55 1.416 0.032

-1.60 1.428 0.012

Pion masses for β = 2.05.

m pion error

-1.00 1.569 0.014

-1.05 1.488 0.012

-1.10 1.385 0.025

-1.15 1.254 0.022

-1.20 1.062 0.038

-1.25 0.592 0.043

-1.30 0.413 0.018

-1.35 0.915 0.021

-1.40 1.228 0.016

-1.45 1.386 0.028

-1.50 1.419 0.017

-1.55 1.441 0.017

Pion masses for β = 2.10.

m pion error

0.50 2.776 0.026

0.25 2.632 0.031

0.00 2.489 0.024

-0.25 2.328 0.027

-0.50 2.144 0.030

-0.75 1.923 0.032

-1.00 1.662 0.030

-1.10 1.540 0.027

-1.15 1.445 0.028

-1.20 1.363 0.029

-1.25 1.243 0.019

-1.30 1.077 0.046

-1.35 0.327 0.035

-1.40 0.969 0.039

-1.45 1.247 0.030

-1.50 1.378 0.033

-1.55 1.399 0.025

-1.60 1.383 0.019

-1.65 1.394 0.041

-1.75 1.315 0.050

-2.00 0.936 0.043

Pion masses for β = 2.00.

m pion error

0.50 2.735 0.025

0.25 2.582 0.023

0.00 2.448 0.039

-0.25 2.254 0.030

-0.50 2.013 0.035

-0.75 1.733 0.041

-0.90 1.488 0.018

-0.95 1.392 0.019

-1.00 1.265 0.022

-1.05 1.112 0.026

-1.10 0.889 0.032

-1.15 0.571 0.026

-1.20 0.245 0.0058

-1.25 0.5721 0.0054

-1.30 1.018 0.017

-1.35 1.283 0.020

-1.40 1.421 0.021

-1.45 1.476 0.025

-1.50 1.494 0.026

-1.75 1.309 0.052

-2.00 0.903 0.072

Pion masses for β = 2.25.
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m pion error

-0.80 1.520 0.021

-0.85 1.414 0.030

-0.90 1.303 0.015

-0.95 1.171 0.022

-1.00 0.989 0.016

-1.05 0.787 0.026

-1.10 0.497 0.015

-1.15 0.2383 0.0085

-1.20 0.499 0.011

-1.25 0.882 0.032

-1.30 1.193 0.026

-1.35 1.388 0.019

Pion masses for β = 2.35.

m pion error

-0.75 1.525 0.023

-0.80 1.441 0.039

-0.85 1.322 0.026

-0.90 1.187 0.047

-0.95 1.049 0.029

-1.00 0.859 0.047

-1.05 0.623 0.030

-1.10 0.319 0.012

-1.15 0.310 0.011

-1.20 0.634 0.024

-1.25 0.998 0.029

-1.30 1.286 0.031

Pion masses for β = 2.40.

m pion error

0.50 2.646 0.026

0.25 2.474 0.023

0.00 2.302 0.031

-0.25 2.063 0.037

-0.50 1.809 0.025

-0.70 1.490 0.012

-0.75 1.388 0.016

-0.80 1.287 0.018

-0.85 1.136 0.016

-0.90 0.992 0.017

-0.95 0.814 0.013

-1.00 0.585 0.012

-1.05 0.3278 0.0089

-1.10 0.2660 0.0069

-1.15 0.5422 0.0066

-1.20 0.895 0.027

-1.25 1.205 0.022

-1.50 1.524 0.048

-1.75 1.252 0.094

-2.00 0.820 0.040

Pion masses for β = 2.50.

m pion error

0.50 2.556 0.030

0.25 2.383 0.037

0.00 2.177 0.031

-0.25 1.916 0.034

-0.50 1.569 0.040

-0.65 1.252 0.028

-0.70 1.109 0.039

-0.75 1.002 0.049

-0.80 0.860 0.033

-0.85 0.686 0.033

-0.90 0.494 0.020

-0.95 0.3026 0.0092

-1.00 0.243 0.013

-1.05 0.428 0.017

-1.10 0.736 0.020

-1.15 1.040 0.040

-1.20 1.273 0.044

-1.25 1.448 0.051

-1.30 1.563 0.036

-1.35 1.579 0.042

-1.50 1.529 0.035

-1.75 1.260 0.061

-2.00 0.777 0.032

Pion masses for β = 2.75.
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m pion error

0.50 2.482 0.018

0.25 2.275 0.023

0.00 2.019 0.030

-0.25 1.731 0.041

-0.50 1.340 0.050

-0.60 1.064 0.045

-0.65 0.941 0.045

-0.70 0.799 0.050

-0.75 0.641 0.022

-0.80 0.496 0.033

-0.85 0.330 0.014

-0.90 0.231 0.010

-1.00 0.327 0.020

-1.05 0.541 0.013

-1.10 0.823 0.039

-1.15 1.100 0.047

-1.20 1.357 0.042

-1.25 1.488 0.058

-1.30 1.572 0.021

-1.50 1.441 0.35

-1.75 1.279 0.045

-2.00 0.690 0.024

Pion masses for β = 3.00.
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B. Rho masses

m rho error

0.50 2.830 0.011

0.25 2.718 0.014

0.00 2.5605 0.0070

-0.25 2.418 0.013

-0.50 2.252 0.010

-0.75 2.0551 0.0072

-1.00 1.841 0.019

-1.25 1.622 0.024

-1.50 1.323 0.016

-1.65 1.110 0.010

-1.70 1.506 0.013

-1.75 1.499 0.013

-1.80 1.463 0.015

-1.85 1.420 0.010

-1.90 1.347 0.018

Rho masses for β = 1.50.

m rho error

0.50 2.8119 0.0074

0.25 2.7012 0.0080

0.00 2.5366 0.0093

-0.25 2.387 0.013

-0.50 2.221 0.025

-0.75 2.029 0.014

-1.00 1.796 0.016

-1.25 1.557 0.017

-1.40 1.3633 0.0051

-1.45 1.302 0.012

-1.50 1.221 0.0099

-1.55 1.149 0.0078

-1.60 1.389 0.28

-1.65 1.567 0.015

-1.70 1.530 0.014

-1.75 1.4803 0.0092

Rho masses for β = 1.75.

m rho error

-1.20 1.534 0.0073

-1.25 1.474 0.020

-1.30 1.428 0.022

-1.35 1.344 0.018

-1.40 1.215 0.017

-1.45 1.247 0.058

-1.50 1.560 0.045

-1.55 1.620 0.011

-1.60 1.596 0.020

-1.65 1.569 0.018

-1.70 1.526 0.032

-1.75 1.474 0.014

Rho masses for β = 1.90.

m rho error

-1.15 1.5674 0.0059

-1.20 1.513 0.012

-1.25 1.439 0.011

-1.30 1.351 0.014

-1.35 1.2269 0.0099

-1.40 0.65 0.41

-1.45 1.408 0.018

-1.50 1.6033 0.0091

-1.55 1.635 0.010

-1.60 1.6084 0.0078

-1.65 1.564 0.013

-1.70 1.527 0.012

Rho masses for β = 1.95.
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m rho error

-1.05 1.6170 0.0077

-1.10 1.542 0.011

-1.15 1.4678 0.0046

-1.20 1.344 0.012

-1.25 1.157 0.012

-1.30 0.470 0.048

-1.35 0.754 0.011

-1.40 1.329 0.012

-1.45 1.597 0.013

-1.50 1.6527 0.0066

-1.55 1.627 0.010

-1.60 1.604 0.012

Rho masses for β = 2.05.

m rho error

-1.00 1.6278 0.0044

-1.05 1.5596 0.0050

-1.10 1.461 0.011

-1.15 1.346 0.012

-1.20 1.162 0.015

-1.25 0.645 0.031

-1.30 0.424 0.010

-1.35 1.042 0.029

-1.40 1.4635 0.0093

-1.45 1.647 0.016

-1.50 1.644 0.011

-1.55 1.626 0.011

Rho masses for β = 2.10.

m rho error

0.50 2.786 0.014

0.25 2.647 0.019

0.00 2.501 0.017

-0.25 2.341 0.013

-0.50 2.174 0.017

-0.75 1.960 0.015

-1.00 1.714 0.014

-1.10 1.604 0.014

-1.15 1.519 0.011

-1.20 1.449 0.016

-1.25 1.353 0.012

-1.30 1.201 0.0081

-1.35 0.384 0.018

-1.40 1.142 0.032

-1.45 1.519 0.029

-1.50 1.635 0.014

-1.55 1.630 0.013

-1.60 1.590 0.011

-1.65 1.565 0.015

-1.75 1.449 0.022

-2.00 0.995 0.033

Rho masses for β = 2.00.

m rho error

0.50 2.739 0.012

0.25 2.597 0.014

0.00 2.456 0.025

-0.25 2.276 0.015

-0.50 2.038 0.013

-0.75 1.774 0.027

-0.90 1.538 0.013

-0.95 1.452 0.012

-1.00 1.331 0.010

-1.05 1.1794 0.0080

-1.10 0.953 0.023

-1.15 0.606 0.021

-1.20 0.2456 0.0035

-1.25 0.5973 0.0058

-1.30 1.132 0.012

-1.35 1.497 0.018

-1.40 1.654 0.012

-1.45 1.683 0.010

-1.50 1.671 0.021

-1.75 1.420 0.032

-2.00 0.919 0.054

Rho masses for β = 2.25.
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m rho error

-0.80 1.5653 0.0088

-0.85 1.459 0.017

-0.90 1.3524 0.0067

-0.95 1.226 0.011

-1.00 1.039 0.016

-1.05 0.830 0.028

-1.10 0.519 0.017

-1.15 0.230 0.0058

-1.20 0.5212 0.0080

-1.25 0.951 0.017

-1.30 1.364 0.029

-1.35 1.612 0.013

Rho masses for β = 2.35.

m rho error

-0.75 1.566 0.013

-0.80 1.481 0.018

-0.85 1.366 0.016

-0.90 1.228 0.019

-0.95 1.100 0.029

-1.00 0.895 0.040

-1.05 0.645 0.016

-1.10 0.320 0.013

-1.15 0.3028 0.0058

-1.20 0.6610 0.0094

-1.25 1.099 0.019

-1.30 1.471 0.020

Rho masses for β = 2.40.

m rho error

0.50 2.652 0.014

0.25 2.4906 0.0077

0.00 2.315 0.017

-0.25 2.085 0.011

-0.50 1.8351 0.0068

-0.70 1.5231 0.0075

-0.75 1.422 0.010

-0.80 1.3252 0.0094

-0.85 1.1699 0.0097

-0.90 1.030 0.012

-0.95 0.8384 0.0059

-1.00 0.605 0.012

-1.05 0.3239 0.0055

-1.10 0.2584 0.0033

-1.15 0.5430 0.0067

-1.20 0.952 0.012

-1.25 1.331 0.013

-1.50 1.647 0.024

-1.75 1.345 0.040

-2.00 0.807 0.023

Rho masses for β = 2.50.

m rho error

0.50 2.563 0.0057

0.25 2.390 0.019

0.00 2.190 0.012

-0.25 1.926 0.025

-0.50 1.597 0.018

-0.65 1.282 0.027

-0.70 1.121 0.028

-0.75 1.016 0.031

-0.80 0.900 0.019

-0.85 0.689 0.030

-0.90 0.4899 0.0078

-0.95 0.2935 0.0099

-1.00 0.2271 0.0073

-1.05 0.4207 0.0071

-1.10 0.742 0.011

-1.15 1.088 0.041

-1.20 1.417 0.033

-1.25 1.638 0.030

-1.30 1.740 0.019

-1.35 1.736 0.023

-1.50 1.636 0.024

-1.75 1.310 0.026

-2.00 0.761 0.018

Rho masses for β = 2.75.
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m rho error

0.50 2.490 0.010

0.25 2.281 0.011

0.00 2.028 0.015

-0.25 1.750 0.017

-0.50 1.358 0.024

-0.60 1.069 0.028

-0.65 0.953 0.016

-0.70 0.807 0.032

-0.75 0.629 0.011

-0.80 0.488 0.015

-0.85 0.317 0.012

-0.90 0.2123 0.0060

-0.95 0.305 0.011

-1.00 0.527 0.013

-1.05 0.835 0.018

-1.10 1.147 0.032

-1.15 1.465 0.033

-1.20 1.652 0.033

-1.25 1.738 0.025

-1.30 1.764 0.020

-1.50 1.621 0.022

-1.75 1.301 0.031

-2.00 0.681 0.015

Rho masses for β = 3.00.
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